
ASN.1 Application

version 1.4

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 Asn1 User’s Guide 1

1.1 Asn1 . 1

1.1.1 Introduction . 1

1.1.2 Getting Started with Asn1 . 2

1.1.3 The Asn1 Application User Interface . 4

1.1.4 The ASN.1 Types . 6

1.1.5 ASN.1 Values . 19

1.1.6 Macros . 20

1.1.7 ASN.1 Information Objects (X.681) . 20

1.1.8 Parameterization (X.683) . 21

1.1.9 Tags . 22

1.1.10 Encoding Rules . 22

2 Asn1 Reference Manual 25

2.1 asn1ct . 27

2.2 asn1rt . 31

List of Tables 33

Bibliography 35

Index of Modules and Functions 37

iiiASN.1 Application

iv ASN.1 Application

Chapter 1

Asn1 User’s Guide

The Asn1 application contains modules with compile-time and run-time support for ASN.1.

1.1 Asn1

1.1.1 Introduction

Features

The Asn1 application provides:

� An ASN.1 compiler for Erlang, which generates encode and decode functions to be used by
Erlang programs sending and receiving ASN.1 specified data.

� Run-time functions used by the generated code.

� Encoding rules supported are BER, the specialized BER version DER and the aligned variant of
PER.

Overview

ASN.1 (Abstract Syntax Notation 1) defines the abstract syntax of information. The purpose of ASN.1
is to have a platform independent language to express types using a standardized set of rules for the
transformation of values of a defined type, into a stream of bytes. This stream of bytes can then be sent
on a communication channel set up by the lower layers in the stack of communication protocols e.g.
TCP/IP or encapsulated within UDP packets. This way, two different applications written in two
completely different programming languages running on different computers with different internal
representation of data can exchange instances of structured data types (instead of exchanging bytes or
bits). This makes programming faster and easier since no code has to be written to process the transport
format of the data.

To write a network application which processes ASN.1 encoded messages, it is prudent and sometimes
essential to have a set of off-line development tools such as an ASN.1 compiler which can generate the
encode and decode logic for the specific ASN.1 data types. It is also necessary to combine this with
some general language-specific runtime support for ASN.1 encoding and decoding.

The ASN.1 compiler must be directed towards a target language or a set of closely related languages.
This manual describes a compiler which is directed towards the functional language Erlang. In order to
use this compiler, familiarity with the language Erlang is essential. Therefore, the runtime support for

1ASN.1 Application

Chapter 1: Asn1 User’s Guide

ASN.1 is also closely related to the language Erlang and consist of a number of functions, which the
compiler uses. The types in ASN.1 and how to represent values of those types in Erlang are described in
this manual.

The following document is structured so that the first part describes how to use ASN.1 compiler, and
then there are descriptions of all the primitive and constructed ASN.1 types and their representation in
Erlang,

Prerequisites

It is assumed that the reader is familiar with the ASN.1 notation as documented in the standard
definition [ITU-T X.680 [1]] which is the primary text. It may also be helpful, but not necessary, to
read the standard definitions [ITU-T X.681 [2]] [ITU-T X.682 [3]] [ITU-T X.683 [4]] [ITU-T X.690
[5]] [ITU-T X.691 [6]].

A very good book explaining those reference texts is [ASN.1 Communication between Heterogeneous
Systems [7]], free to download at http://www.oss.com/asn1/dubuisson.html 1.

Knowledge of Erlang programming is also essential and reading the book Concurrent Programming in
ERLANG, [Concurrent Programming in ERLANG [8]], is recommended. Part 1 of this is available on
the web in PDF2 format.

1.1.2 Getting Started with Asn1

A First Example

The following example demonstrates the basic functionality used to run the Erlang ASN.1 compiler.

First, create a file called People.asn containing the following:

People DEFINITIONS IMPLICIT TAGS ::=

BEGIN
EXPORTS Person;

Person ::= [PRIVATE 19] SEQUENCE f
name PrintableString,
location INTEGER fhome(0),field(1),roving(2)g,
age INTEGER OPTIONAL g

END

This file (people.asn) must be compiled before it can be used. The ASN.1 compiler checks that the
syntax is correct and that the text represents proper ASN.1 code before generating an abstract syntax
tree. The code-generator then uses the abstract syntax tree in order to generate code.

The generated Erlang files will be placed in the current directory or in the directory specified with the
foutdir,Dirg option. The following shows how the compiler can be called from the Erlang shell:

1URL: http://www.oss.com/asn1/dubuisson.html
2URL: http://www.erlang.org/download/erlang-book-part1.pdf

2 ASN.1 Application

1.1: Asn1

1>asn1ct:compile("People",[ber bin]).
Erlang ASN.1 compiling "People.asn"
--fgenerated,"People.asn1db"g--
--fgenerated,"People.hrl"g--
--fgenerated,"People.erl"g--
ok
2>

The ASN.1 module People is now accepted and the abstract syntax tree is saved in the People.asn1db
file, the generated Erlang code is compiled using the Erlang compiler and loaded into the Erlang
runtime system. Now there is a user interface of encode/2 and decode/2 in the module People, which is
invoked by:
’People’:encode(<Type name>,<Value>),

or
’People’:decode(<Type name>,<Value>),

Alternatively one can use the asn1rt:encode(<Module name> ,<Type name>,<Value>) and
asn1rt:decode(< Module name>,<Type name>,<Value>) calls. However, they are not as efficient
as the previous methods since they result in an additional apply/3 call.

Assume there is a network application which receives instances of the ASN.1 defined type Person,
modifies and sends them back again:

receive
{Port,{data,Bytes}} ->

case ’People’:decode(’Person’,Bytes) of
{ok,P} ->

{ok,Answer} = ’People’:encode(’Person’,mk_answer(P)),
Port ! {self(),{command,Answer}};

{error,Reason} ->
exit({error,Reason})

end
end,

In the example above, a series of bytes is received from an external source and the bytes are then
decoded into a valid Erlang term. This was achieved with the call ’People’:decode(’Person’,Bytes)
which returned an Erlang value of the ASN.1 type Person. Then an answer was constructed and
encoded using ’People’:encode(’Person’,Answer) which takes an instance of a defined ASN.1 type
and transforms it to a (possibly) nested list of bytes according to the BER or PER encoding-rules.
The encoder and the decoder can also be run from the shell. The following dialogue with the shell
illustrates how the functions asn1rt:encode/3 and asn1rt:decode/3 are used.

2> Rockstar = f’Person’,"Some Name",roving,50g.
f’Person’,"Some Name",roving,50g
3> fok,Bytesg = asn1rt:encode(’People’,’Person’,Rockstar).
fok,[<<243>>,

[17],
[19,9,"Some Name"],
[2,1,[2]],
[2,1,"2"]]g

4> Bin = list to binary(Bytes).
<<243,17,19,9,83,111,109,101,32,78,97,109,101,2,1,2,2,1,50>>
5> fok,Persong = asn1rt:decode(’People’,’Person’,Bin).
fok,f’Person’,"Some Name",roving,50gg
6>

3ASN.1 Application

Chapter 1: Asn1 User’s Guide

Notice that the result from encode is a nested list which must be turned into a binary before the call to
decode. A binary is necessary as input to decode since the module was compiled with the ber bin
option The reason for returning a nested list is that it is faster to produce and the list to binary
operation is performed automatically when the list is sent via the Erlang port mechanism.

1.1.3 The Asn1 Application User Interface

The Asn1 application provides two separate user interfaces:

� The module asn1ct which provides the compile-time functions (including the compiler).

� The module asn1rt which provides the run-time functions. However, it is preferable to use the
generated encode/2 and decode/2 functions in each module, eg. ’Module’:encode(’Type’,Value),
in favor of the asn1rt interface.

The reason for the division of the interface into compile-time and run-time is that only run-time
modules (asn1rt*) need to be loaded in an embedded system.

Compile-time Functions

The ASN.1 compiler can be invoked directly from the command-line by means of the erlc program.
This is convenient when compiling many ASN.1 files from the command-line or when using Makefiles.
Here are some examples of how the erlc command can be used to invoke the ASN.1 compiler:

erlc -bper Person.asn
erlc -bber ../Example.asn
erlc -o ../asnfiles -i ../asnfiles -i /usr/local/standards/asn1 Person.asn

The useful options for the ASN.1 compiler are:

-b[ber|per|ber bin|per bin] Choice of encoding rules, if omitted ber is the default. The ber bin
and per bin options implies that the encoding/decoding functions use binaries and the bit syntax,
which in most cases gives significant increase of performance. We really recommend that you use
these options instead of ber and per since the use of binaries will be the default in forthcoming
versions.

-o OutDirectory Where to put the generated files, default is the current directory.

-i IncludeDir Where to search for .asn1db files with info about types and values imported from
other modules. This option can be repeated many times if there are several places to search in.
The compiler will always search the current directory first.

+compact bit string Gives the user the option to use a compact format of the BIT STRING type to
save memory space, typing space and increase encode/decode performance, for details see BIT
STRING [page 9]type section.

+der DER encoding rule. Only when using -ber or -ber bin option.

+optimize This flag has effect only when used together with the per bin flag. It gives time optimized
code in the generated modules and it uses another runtime module and a linked-in driver. The
result from an encode is a binary.
When this flag is used you cannot use the old format fTypeName,Valuegwhen you encode values.
Since it is an unnecessary construct it has been removed in this case. It is neither admitted to
construct SEQUENCE or SET component values with the format fComponentName,Valueg since
it also is unnecessary. The only case were it is necessary is in a CHOICE, were you have to pass
values to the right component by specifying fComponentName,Valueg. See also about
fTypename,Valueg [page 6] below and in the sections for each type.

4 ASN.1 Application

1.1: Asn1

+’Any Erlc Option’ You may add any option to the Erlang compiler when compiling the generated
Erlang files. Any option unrecognised by the asn1 compiler will be passed to the Erlang compiler.

For a complete description of erlc see Erts Reference Manual.

The compiler and other compile-time functions can also be invoked from the Erlang shell. Below
follows a brief description of the primary functions, for a complete description of each function see the
Asn1 Reference Manual [page 27], the asn1ct module.

The compiler is invoked by using asn1ct:compile/1 with default options, or asn1ct:compile/2 if
explicit options are given. Example:

asn1ct:compile("H323-MESSAGES.asn1").

which equals:

asn1ct:compile("H323-MESSAGES.asn1",[ber])

asn1ct:compile("H323-MESSAGES.asn1",[per bin]).

The generic encode and decode functions can be invoked like this:

asn1ct:encode(’H323-MESSAGES’,’SomeChoiceType’,fcall,"octetstring"g).
asn1ct:decode(’H323-MESSAGES’,’SomeChoiceType’,Bytes).

Or, preferable like:

’H323-MESSAGES’:encode(’SomeChoiceType’,fcall,"octetstring"g).
’H323-MESSAGES’:decode(’SomeChoiceType’,Bytes).

Run-time Functions

A brief description of the major functions is given here. For a complete description of each function see
the Asn1 Reference Manual [page 31], the asn1rt module.

The generic run-time encode and decode functions can be invoked as below:

asn1rt:encode(’H323-MESSAGES’,’SomeChoiceType’,fcall,"octetstring"g).
asn1rt:decode(’H323-MESSAGES’,’SomeChoiceType’,Bytes).

Or, preferable like:

’H323-MESSAGES’:encode(’SomeChoiceType’,fcall,"octetstring"g).
’H323-MESSAGES’:decode(’SomeChoiceType’,Bytes).

When the ASN.1 specification is compiled with the options per bin and optimize the run-time
encode uses a linked-in driver. It will be loaded automatically at the first call to encode. If one doesn’t
want the performance overhead of the driver beeing loaded at the first encode it is possible to load the
driver separately with the call asn1rt:load driver().

By invoking the function info/0 in a generated module, one gets information about which compiler
options were used.

5ASN.1 Application

Chapter 1: Asn1 User’s Guide

Errors

Errors detected at compile time appear on the screen together with a line number indicating where in
the source file the error was detected. If no errors are found, an Erlang ASN.1 module will be created as
default.

The run-time encoders and decoders (in the asn1rt module) do execute within a catch and returns
fok, Datag or ferror, fasn1, Descriptiongg where Description is an Erlang term describing the
error.

1.1.4 The ASN.1 Types

This section describes the ASN.1 types including their functionality, purpose and how values are
assigned in Erlang.

ASN.1 has both primitive and constructed types:

Primitive types Constructed types

BOOLEAN [page 7] SEQUENCE [page 12]

INTEGER [page 7] SET [page 14]

REAL [page 8] CHOICE [page 16]

NULL [page 8] SET OF and SEQUENCE OF [page 17]

ENUMERATED [page 9] ANY [page 17]

BIT STRING [page 9] ANY DEFINED BY [page 17]

OCTET STRING [page 10] EXTERNAL [page 17]

Character Strings [page 11] EMBEDDED PDV [page 17]

OBJECT IDENTIFIER [page 12] CHARACTER STRING [page 17]

Object Descriptor [page 12]

The TIME types [page 12]

Table 1.1: The supported ASN.1 types

Note:
Values of each ASN.1 type has its own representation in Erlang described in the following
subsections. Users shall provide these values for encoding according to the representation without
using the type name in the value, as in the example below.

Operational ::= BOOLEAN --ASN.1 definition

In Erlang code it may look like:

Val = true,
fok,Bytesg=asn1rt:encode(MyModule,’Operational’,Val),

6 ASN.1 Application

1.1: Asn1

For historical reasons it is also possible to assign ASN.1 values in Erlang using a tuple notation with type
and value as this

Val = f’Operational’,trueg

Warning:
The tuple notation is only kept because of backward compatibility and may be withdrawn in a future
release. If the notation is used the Typename element must be spelled correctly, otherwise a run-time
error will occur.

If the ASN.1 module is compiled with the flags per bin or ber bin and optimize it is not allowed to
use the fTypename,Valueg notation. That possibility has been removed due to performance reasons.
Neither is it allowed to use the fComponentName,Valueg notation in case of a SEQUENCE or SET
type.

Below follows a description of how values of each type can be represented in Erlang.

BOOLEAN

Booleans in ASN.1 express values that can be either TRUE or FALSE. The meanings assigned to TRUE
or FALSE is beyond the scope of this text.
In ASN.1 it is possible to have:

Operational ::= BOOLEAN

Assigning a value to the type Operational in Erlang is possible by using the following Erlang code:

Myvar1 = true,

Thus, in Erlang the atoms true and false are used to encode a boolean value.

INTEGER

ASN.1 itself specifies indefinitely large integers, and the Erlang systems with versions 4.3 and higher,
support very large integers, in practice indefinitely large integers.

The concept of sub-typing can be applied to integers as well as to other ASN.1 types. The details of
sub-typing are not explained here, for further info see [ITU-T X.680 [1]]. A variety of syntaxes are
allowed when defining a type as an integer:

T1 ::= INTEGER
T2 ::= INTEGER (-2..7)
T3 ::= INTEGER (0..MAX)
T4 ::= INTEGER (0<..MAX)
T5 ::= INTEGER (MIN<..-99)
T6 ::= INTEGER fred(0),blue(1),white(2)g

7ASN.1 Application

Chapter 1: Asn1 User’s Guide

The Erlang representation of an ASN.1 INTEGER is an integer or an atom if a so called Named
NumberList (see T6 above) is specified.

Below is an example of Erlang code which assigns values for the above types:

T1value = 0,
T2value = 6,
T6value1 = blue,
T6value2 = 0,
T6value3 = white

The Erlang variables above are now bound to valid instances of ASN.1 defined types. This style of value
can be passed directly to the encoder for transformation into a series of bytes.

The decoder will return an atom if the value corresponds to a symbol in the Named NumberList.

REAL

In this version reals are not implemented. When they are, the following ASN.1 type is used:

R1 ::= REAL

Can be assigned a value in Erlang as:

R1value1 = 2.14,
R1value2 = f256,10,-2g,

In the last line note that the tuple f256,10,-2g is the real number 2.56 in a special notation, which will
encode faster than simply stating the number as 2.56. The arity three tuple is
fMantissa,Base,Exponentg i.e. Mantissa * Base^Exponent.

NULL

Null is suitable in cases where supply and recognition of a value is important but the actual value is not.

Notype ::= NULL

The NULL type can be assigned in Erlang:

N1 = ’NULL’,

The actual value is the quoted atom ’NULL’.

8 ASN.1 Application

1.1: Asn1

ENUMERATED

The enumerated type can be used, when the value we wish to describe, may only take one of a set of
predefined values.

DaysOfTheWeek ::= ENUMERATED f sunday(1),monday(2),tuesday(3),
wednesday(4),thursday(5),friday(6),saturday(7) g

For example to assign a weekday value in Erlang use the same atom as in the Enumerations of the type
definition:

Day1 = saturday,

The enumerated type is very similar to an integer type, when defined with a set of predefined values.
An enumerated type differs from an integer in that it may only have specified values, whereas an integer
can also have any other value.

BIT STRING

The BIT STRING type can be used to model information which is made up of arbitrary length series of
bits. It is intended to be used for a selection of flags, not for binary files.
In ASN.1 BIT STRING definitions may look like:

Bits1 ::= BIT STRING
Bits2 ::= BIT STRING ffoo(0),bar(1),gnu(2),gnome(3),punk(14)g

There are four different notations available for representation of BIT STRING values in Erlang and as
input to the encode functions.

1. A list of binary digits (0 or 1).

2. A hexadecimal number (or an integer). This format should be avoided, since it is easy to
misinterpret a BIT STRING value in this format. This format may be withdrawn in a future release.

3. A list of atoms corresponding to atoms in the NamedBitList in the BIT STRING definition.

4. As fUnused,Binaryg where Unused denotes how many trailing zero-bits 0 to 7 that are unused in
the least significant byte in Binary. This notation is only available when the ASN.1 files have been
compiled with the +compact bit string flag in the option list. In this case it is possible to use all
kinds of notation when encoding. But the result when decoding is always in the compact form.
The benefit from this notation is a more compact notation when one has large BIT STRINGs. The
encode/decode performance is also much better in the case of large BIT STRINGs.

Note:
Note that it is advised not to use the integer format of a BIT STRING, see the second point above.

9ASN.1 Application

Chapter 1: Asn1 User’s Guide

Bits1Val1 = [0,1,0,1,1],
Bits1Val2 = 16#1A,
Bits1Val3 = f3,<<0:1,1:1,0:1,1:1,1:1,0:3>>g

Note that Bits1Val1, Bits1Val2 and Bits1Val3 denote the same value.

Bits2Val1 = [gnu,punk],
Bits2Val2 = 2#1110,
Bits2Val3 = [bar,gnu,gnome],
Bits2Val4 = [0,1,1,1]

The above Bits2Val2, Bits2Val3 and Bits2Val4 also all denote the same value.

Bits2Val1 is assigned symbolic values. The assignment means that the bits corresponding to gnu and
punk i.e. bits 2 and 14 are set to 1 and the rest set to 0. The symbolic values appear as a list of values. If
a named value appears, which is not specified in the type definition, a run-time error will occur.

The compact notation equivalent to the empty BIT STRING is f0,<<>>g, which in the other
notations is [] or 0.

BIT STRINGS may also be sub-typed with for example a SIZE specification:

Bits3 ::= BIT STRING (SIZE(0..31))

This means that no bit higher than 31 can ever be set.

OCTET STRING

The OCTET STRING is the simplest of all ASN.1 types The OCTET STRING only moves or transfers
e.g. binary files or other unstructured information complying to two rules. Firstly, the bytes consist of
octets and secondly, encoding is not required.

It is possible to have the following ASN.1 type definitions:

O1 ::= OCTET STRING
O2 ::= OCTET STRING (SIZE(28))

With the following example assignments in Erlang:

O1Val = [17,13,19,20,0,0,255,254],
O2Val = "must be exactly 28 chars....",

Observe that O1Val is assigned a series of numbers between 0 and 255 i.e. octets. O2Val is assigned
using the string notation.

10 ASN.1 Application

1.1: Asn1

Character Strings

ASN.1 supports a wide variety of character sets. The main difference between OCTET STRINGS and
the Character strings is that OCTET STRINGS have no imposed semantics on the bytes delivered.

However, when using for instance the IA5String (which closely resembles ASCII) the byte 65 (in
decimal notation) means the character ’A’.

For example, if a defined type is to be a VideotexString and an octet is received with the unsigned
integer value X, then the octet should be interpreted as specified in the standard ITU-T T.100,T.101.

The ASN.1 to Erlang compiler will not determine the correct interpretation of each BER (Basic
Encoding Rules) string octet value with different Character strings. Interpretation of octets is the
responsibility of the application. Therefore, from the BER string point of view, octets appear to be very
similar to character strings and are compiled in the same way.

It should be noted that when PER (Packed Encoding Rules) is used, there is a significant difference in
the encoding scheme between OCTET STRINGS and other strings. The constraints specified for a type
are especially important for PER, where they affect the encoding.

Please note that all the Character strings are supported and it is possible to use the following ASN.1
type definitions:

Digs ::= NumericString (SIZE(1..3))
TextFile ::= IA5String (SIZE(0..64000))

and the following Erlang assignments:

DigsVal1 = "456",
DigsVal2 = "123",
TextFileVal1 = "abc...xyz...",
TextFileVal2 = [88,76,55,44,99,121 a lot of characters here]

The Erlang representation for “BMPString” and “UniversalString” is either a list of ASCII values or a list
of quadruples. The quadruple representation associates to the Unicode standard representation of
characters. The ASCII characters are all represented by quadruples beginning with three zeros like
f0,0,0,65g for the ’A’ character. When decoding a value for these strings the result is a list of
quadruples, or integers when the value is an ASCII character. The following example shows how it
works:

In a file PrimStrings.asn1 the type BMP is defined as
BMP ::= BMPString then using BER encoding (ber bin option)the input/output format will be:

1> fok,Bytes1g = asn1rt:encode(’PrimStrings’,’BMP’,[f0,0,53,53g,f0,0,45,56g]).
fok,[30,4,"55-8"]g
2> asn1rt:decode(’PrimStrings’,’BMP’,list to binary(Bytes1)).
fok,[f0,0,53,53g,f0,0,45,56g]g
3> fok,Bytes2g = asn1rt:encode(’PrimStrings’,’BMP’,[f0,0,53,53g,f0,0,0,65g]).
fok,[30,4,[53,53,0,65]]g
4> asn1rt:decode(’PrimStrings’,’BMP’,list to binary(Bytes2)).
fok,[f0,0,53,53g,65]g
5> fok,Bytes3g = asn1rt:encode(’PrimStrings’,’BMP’,"BMP string").
fok,[30,20,[0,66,0,77,0,80,0,32,0,115,0,116,0,114,0,105,0,110,0,103]]g
6> asn1rt:decode(’PrimStrings’,’BMP’,list to binary(Bytes3)).
fok,"BMP string"g

11ASN.1 Application

Chapter 1: Asn1 User’s Guide

OBJECT IDENTIFIER

The OBJECT IDENTIFIER is used whenever a unique identity is required. An ASN.1 module, a
transfer syntax, etc. is identified with an OBJECT IDENTIFIER. Assume the example below:

Oid ::= OBJECT IDENTIFIER

Therefore, the example below is a valid Erlang instance of the type ’Oid’.

OidVal1 = f1,2,55g,

The OBJECT IDENTIFIER value is simply a tuple with the consecutive values which must be integers.

The first value is limited to the values 0, 1 or 2 and the second value must be in the range 0..39 when
the first value is 0 or 1.

The OBJECT IDENTIFIER is a very important type and it is widely used within different standards to
uniquely identify various objects. In [ASN.1 Communication between Heterogeneous Systems [7]],
there is an easy-to-understand description of the usage of OBJECT IDENTIFIER.

Object Descriptor

Values of this type can be assigned a value as an ordinary string i.e.
“This is the value of an Object descriptor”

The TIME Types

Two different time types are defined within ASN.1, Generalized Time and UTC (Universal Time
Coordinated), both are assigned a value as an ordinary string within double quotes i.e.
“19820102070533.8”.

In case of DER encoding the compiler does not check the validity of the time values. The DER
requirements upon those strings is regarded as a matter for the application to fulfill.

SEQUENCE

The structured types of ASN.1 are constructed from other types in a manner similar to the concepts of
array and struct in C.
A SEQUENCE in ASN.1 is comparable with a struct in C and a record in Erlang. A SEQUENCE may
be defined as:

Pdu ::= SEQUENCE f
a INTEGER,
b REAL,
c OBJECT IDENTIFIER,
d NULL g

This is a 4-component structure called ’Pdu’. The major format for representation of SEQUENCE in
Erlang is the record format. For each SEQUENCE and SET in an ASN.1 module an Erlang record
declaration is generated. For Pdu above, a record like this is defined:

12 ASN.1 Application

1.1: Asn1

-record(’Pdu’,fa, b, c, dg).

The record declarations for a module M are placed in a separate M.hrl file.

Values can be assigned in Erlang as shown below:

MyPdu = #’Pdu’fa=22,b=77.99,c=f0,1,2,3,4g,d=’NULL’g.

It is also possible to specify the value for each component in a SEQUENCE or a SET as
fComponentName,Valueg. It is not recommended and is not supported if the flags per bin or ber bin
and optimize were used when the module was compiled.

The decode functions will return a record as result when decoding a SEQUENCE or a SET.

A SEQUENCE and a SET may contain a component with a DEFAULT key word followed by the actual value
that is the default value. In case of BER encoding it is optional to encode the value if it equals the
default value. If the application uses the atom asn1 DEFAULT as value or if the value is a primitive
value that equals the default value the encoding omits the bytes for this value, which is more efficient
and it results in fever bytes to send to the receiving application.

For instance, if the following types exists in a file “File.asn”:

Seq1 ::= SEQUENCE f
a INTEGER DEFAULT 1,
b Seq2 DEFAULT faa TRUE, bb 15g

g

Seq2 ::= SEQUENCE f
aa BOOLEAN,
bb INTEGER

g

Some values and the corresponding encoding in an Erlang terminal is shown below:

1> asn1ct:compile(’File’).
Erlang ASN.1 version "1.3.2" compiling "File.asn1"
Compiler Options: []
--fgenerated,"File.asn1db"g--
--fgenerated,"File.hrl"g--
--fgenerated,"File.erl"g--
ok
2> ’File’:encode(’Seq1’,f’Seq1’,asn1 DEFAULT,asn1 DEFAULTg).
fok,["0",[0],[[],[]]]g
3> lists:flatten(["0",[0],[[],[]]]).
[48,0]
4> ’File’:encode(’Seq1’,f’Seq1’,1,f’Seq2’,true,15gg).
fok,["0","\b",[[],["\241",[6],[[[128],[1],"\377"],[[129],[1],[15]]]]]]g
5> lists:flatten(["0","\b",[[],["\241",[6],[[[128],[1],"\377"],[[129],[1],[15]]]]]]).
[48,8,161,6,128,1,255,129,1,15]
6>

13ASN.1 Application

Chapter 1: Asn1 User’s Guide

The result after command line 3, in the example above,shows that the encoder omits the encoding of
default values when they are specifid by asn1 DEFAULT. Line 5 shows that even primitive values that
equals the default value are detected and not encoded. But the constructed value of component b in
Seq1 is not recognized as the default value. Checking of default values in BER is not done in case of
complex values, because it would be to expensive.

But, the DER encoding format has stronger requirements regarding default values both for SET and
SEQUENCE. A more elaborate and time expensive check of default values will take place. The
following is an example with the same types and values as above but with der encoding format.

1> asn1ct:compile(’File’,[der]).
Erlang ASN.1 version "1.3.2" compiling "File.asn1"
Compiler Options: [der]
--fgenerated,"File.asn1db"g--
--fgenerated,"File.hrl"g--
--fgenerated,"File.erl"g--
ok
2> ’File’:encode(’Seq1’,f’Seq1’,asn1 DEFAULT,asn1 DEFAULTg).
fok,["0",[0],[[],[]]]g
3> lists:flatten(["0",[0],[[],[]]]).
[48,0]
4> ’File’:encode(’Seq1’,f’Seq1’,1,f’Seq2’,true,15gg).
fok,["0",[0],[[],[]]]g
5> lists:flatten(["0",[0],[[],[]]]).
[48,0]
6>

Line 5 shows that even values of constructed types is checked and if it equals the default value it will
not be encoded.

SET

The SET type is an unusual construct and normally the SEQUENCE type is more appropriate to use.
Set is also inefficient compared with SEQUENCE, as the components can be in any order. Hence, it
must be possible to distinguish every component in ’SET’, both when encoding and decoding a value of
a type defined to be a SET. The tags of all components must be different from each other in order to be
easily recognizable.

A SET may be defined as:

Pdu2 ::= SET f
a INTEGER,
b BOOLEAN,
c ENUMERATED fon(0),off(1)g g

A SET is represented as an Erlang record. For each SEQUENCE and SET in an ASN.1 module an Erlang
record declaration is generated. For Pdu2 above a record is defined like this:

-record(’Pdu2’,fa, b, cg).

The record declarations for a module M are placed in a separate M.hrl file.

Values can be assigned in Erlang as demonstrated below:

14 ASN.1 Application

1.1: Asn1

V = #’Pdu2’fa=44,b=false,c=offg.

The decode functions will return a record as result when decoding a SET.

The difference between SET and SEQUENCE is that the order of the components (in the BER
encoded format) is undefined for SET and defined as the lexical order from the ASN.1 definition for
SEQUENCE. The ASN.1 compiler for Erlang will always encode a SET in the lexical order. The decode
routines can handle SET components encoded in any order but will always return the result as a record.
Since all components of the SET must be distinguishable both in the encoding phase as well as the
decoding phase the following type is not allowed in a module with EXPLICIT or IMPLICIT as
tag-default :

Bad ::= SET fi INTEGER,
j INTEGER g

The ASN.1 to Erlang compiler rejects the above type. We shall not explain the concept of tag further
here, we refer to [ITU-T X.680 [1]].

Encoding of a SET with components with DEFAULT values behaves similar as a SEQUENCE, see
above [page 13]. The DER encoding format restrictions on DEFAULT values is the same for SET as for
SEQUENCE, and is supported by the compiler, see above [page 14].

Moreover, in DER the elements of a SET will be sorted. If a component is an untagged choice the
sorting have to take place in run-time. This fact emphasizes the following recomendation if DER
encoding format is used.

The concept of SET is an unusual construct and one cannot think of one single application where the
set type is essential. (Imagine if someone “invented” the shuffled array in ’C’) People tend to think that
’SET’ sounds nicer and more mathematical than ’SEQUENCE’ and hence use it when ’SEQUENCE’
would have been more appropriate. It is also most inefficient, since every correct implementation of
SET must always be prepared to accept the components in any order. So, if possible use SEQUENCE
instead of SET.

Notes about Extendability for SEQUENCE and SET

When a SEQUENCE or SET contains an extension marker and extension components like this:

SExt ::= SEQUENCE f
a INTEGER,
...,
b BOOLEAN g

Then the SEQUENCE is represented in Erlang as a record like this:

-record(’SExt’,fa,b=asn1 NOEXTVALUEg).

During decoding the b field of the record will get the decoded value of the b component if present and
otherwise the value asn1 NOEXTVALUE.

15ASN.1 Application

Chapter 1: Asn1 User’s Guide

CHOICE

The CHOICE type is a space saver and is similar to the concept of a ’union’ in the C-language. As with
the previous SET-type, the tags of all components of a CHOICE need to be distinct. If AUTOMATIC
TAGS are defined for the module (which is preferable) the tags can be omitted completely in the
ASN.1 specification of a CHOICE.

Assume:

T ::= CHOICE f
x [0] REAL,
y [1] INTEGER,
z [2] OBJECT IDENTIFIER g

It is then possible to assign values:

TVal1 = fy,17g,
TVal2 = fz,f0,1,2gg,

A CHOICE value is always represented as the tuple fChoiceAlternative, Valg where
ChoiceAlternative is an atom denoting the selected choice alternative.

It is also allowed to have a CHOICE type tagged as follow:

C ::= [PRIVATE 111] CHOICE f
C1,
C2 g

C1 ::= CHOICE f
a [0] INTEGER,
b [1] BOOLEAN g

C2 ::= CHOICE f
c [2] INTEGER,
d [3] OCTET STRING g

In this case, the top type C appears to have no tags at all in its components, however, both C1 and C2
are also defined as CHOICE types and they have distinct tags among themselves. Hence, the above type
C is both legal and allowed.

Extendable CHOICE When a CHOICE contains an extension marker and the decoder detects an
unknown alternative of the CHIOCE the value is represented as:

fasn1 ExtAlt, BytesForOpenTypeg

Where BytesForOpenType is a list of bytes constituting the encoding of the “unknown” CHOICE
alternative.

16 ASN.1 Application

1.1: Asn1

SET OF and SEQUENCE OF

The SET OF and SEQUENCE OF types correspond to the concept of an array found in several
programming languages. The Erlang syntax for both of these types is straight forward. For example:

Arr1 ::= SET SIZE (5) OF INTEGER (4..9)
Arr2 ::= SEQUENCE OF OCTET STRING

We may have the following in Erlang:

Arr1Val = [4,5,6,7,8],
Arr2Val = ["abc",[14,34,54],"Octets"],

Please note that the definition of the SET OF type implies that the order of the components is
undefined, but in practice there is no difference between SET OF and SEQUENCE OF. The ASN.1
compiler for Erlang does not randomize the order of the SET OF components before encoding.

However, in case of a value of the type SET OF, the DER encoding format requires the elements to be
sent in ascending order of their encoding, which implies an expensive sorting procedure in run-time.
Therefore it is strongly recommended to use SEQUENCE OF instead of SET OF if it is possible.

ANY and ANY DEFINED BY

The types ANY and ANY DEFINED BY have been removed from the standard since 1994. It is
recommended not to use these types any more. They may, however, exist in some old ASN.1 modules.
The idea with this type was to leave a “hole” in a definition where one could put unspecified data of any
kind, even non ASN.1 data.

A value of this type is encoded as an open type.

Instead of ANY/ANY DEFINED BY one should use information object class, table constraints and
parameterization. In particular the construct TYPE-IDENTIFIER.@Type accomplish the same as the
depricated ANY.

See also Information object [page 20]

EXTERNAL, EMBEDDED PDV and CHARACTER STRING

These types are used in presentation layer negotiation. They are encoded according to their associated
type, see [ITU-T X.680 [1]].

The EXTERNAL type had a slightly different associated type before 1994. [ITU-T X.691 [6]] states that
encoding shall follow the older associate type. Therefore does generated encode/decode functions
convert values of the newer format to the older format before encoding. This implies that it is allowed
to use EXTERNAL type values of either format for encoding. Decoded values are always returned on the
newer format.

17ASN.1 Application

Chapter 1: Asn1 User’s Guide

Embedded Named Types

The structured types previously described may very well have other named types as their components.
The general syntax to assign a value to the component C of a named ASN.1 type T in Erlang is the
record syntax #’T’f’C’=Valueg. Where Value may be a value of yet another type T2.

For example:

B ::= SEQUENCE f
a Arr1,
b [0] T g

Arr1 ::= SET SIZE (5) OF INTEGER (4..9)

T ::= CHOICE f
x [0] REAL,
y [1] INTEGER,
z [2] OBJECT IDENTIFIER g

The above example can be assigned like this in Erlang:

V2 = #’B’fa=[4,5,6,7,8], b=fx,7.77gg.

Embedded Structured Types

It is also possible in ASN.1 to have components that are themselves structured types. For example, it is
possible to have:

Emb ::= SEQUENCE f
a SEQUENCE OF OCTET STRING,
b SET f

a [0] INTEGER,
b [1] INTEGER DEFAULT 66g,

c CHOICE f
a INTEGER,
b FooType g g

FooType ::= [3] VisibleString

The following records are generated because of the type Emb:

-record(’Emb,fa, b, cg).
-record(’Emb b’,fa, b = asn1 DEFAULTg). % the embedded SET type

Values of the Emb type can be assigned like this:

V = #’Emb’{a=["qqqq",[1,2,255]],
b = #’Emb_b’{a=99},
c ={b,"Can you see this"}}.

18 ASN.1 Application

1.1: Asn1

Recursive Types

Types may refer to themselves. Suppose:

Rec ::= CHOICE f
nothing [0] NULL,
something SEQUENCE f

a INTEGER,
b OCTET STRING,
c Rec gg

This type is recursive; that is, it refers to itself. This is allowed in ASN.1 and the ASN.1-to-Erlang
compiler supports this recursive type. A value for this type is assigned in Erlang as shown below:

V = fsomething,#’Rec something’fa = 77,
b = "some octets here",
c = fnothing,’NULL’ggg.

1.1.5 ASN.1 Values

Values can be assigned to ASN.1 type within the ASN.1 code itself, as opposed to the actions taken in
the previous chapter where a value was assigned to an ASN.1 type in Erlang. The full value syntax of
ASN.1 is supported and [X.680] describes in detail how to assign values in ASN.1. Below is a short
example:

TT ::= SEQUENCE f
a INTEGER,
b SET OF OCTET STRING g

tt TT ::= fa 77,b f"kalle","kula"gg

The value defined here could be used in several ways. Firstly, it could be used as the value in some
DEFAULT component:

SS ::= SET f
s [0] OBJECT IDENTIFIER,
val TT DEFAULT tt g

It could also be used from inside an Erlang program. If the above ASN.1 code was defined in ASN.1
module Values, then the ASN.1 value tt can be reached from Erlang as a function call to
’Values’:tt() as in the example below.

1> Val = ’Values’:tt().
f’TT’,77,["kalle","kula"]g
2> fok,Bytesg = ’Values’:encode(’TT’,Val).
fok,["0",

[18],
[[[128],[1],"M"],["\241","\r",[[[4],[5],"kalle"],[[4],[4],"kula"]]]]]g

3> FlatBytes = lists:flatten(Bytes).
[48,18,128,1,77,161,13,4,5,107,97,108,108,101,4,4,107,117,108,97]
4> ’Values’:decode(’TT’,FlatBytes).
fok,f’TT’,77,["kalle","kula"]gg
5>

19ASN.1 Application

Chapter 1: Asn1 User’s Guide

The above example shows that a function is generated by the compiler that returns a valid Erlang
representation of the value, even though the value is of a complex type.

Furthermore, there is a macro generated for each value in the .hrl file. So, the defined value tt can also
be extracted by ?tt in application code.

1.1.6 Macros

MACRO is not supported as the the type is no longer part of the ASN.1 standard.

1.1.7 ASN.1 Information Objects (X.681)

Information Object Classes, Information Objects and Information Object Sets, (in the following called
classes, objects and object sets respectively), are defined in the standard definition [ITU-T X.681 [2]].
In the following only a brief explanation is given.

These constructs makes it possible to define open types, i.e. values of that type can be of any ASN.1
type. It is also possible to define relationships between different types and values, since classes can hold
types, values, objects, object sets and other classes in its fields. An Information Object Class may be
defined in ASN.1 as:

GENERAL-PROCEDURE ::= CLASS f
&Message,
&Reply OPTIONAL,
&Error OPTIONAL,
&id PrintableString UNIQUE

g
WITH SYNTAX f

NEW MESSAGE &Message
[REPLY &Reply]
[ERROR &Error]
ADDRESS &id

g

An object is an instance of a class and an object set is a set containing objects of one specified class. A
definition may look like below.

The object object1 is an instance of the CLASS GENERAL-PROCEDURE and has one type field and
one fixed type value field. The object object2 also has an OPTIONAL field ERROR, which is a type
field.

object1 GENERAL-PROCEDURE ::= f
NEW MESSAGE PrintableString
ADDRESS "home"

g

object2 GENERAL-PROCEDURE ::= f
NEW MESSAGE INTEGER
ERROR INTEGER
ADDRESS "remote"

g

20 ASN.1 Application

1.1: Asn1

The field ADDRESS is a UNIQUE field. Objects in an object set must have unique values in their
UNIQUE field, as in GENERAL-PROCEDURES:

GENERAL-PROCEDURES GENERAL-PROCEDURE ::= f
object1 | object2g

One can not encode a class, object or object set, only refering to it when defining other ASN.1 entities.
Typically one refers to a class and to object sets by table constraints and component relation constraints
[ITU-T X.682 [3]] in ASN.1 types, as in:

StartMessage ::= SEQUENCE f
msgId GENERAL-PROCEDURE.&id (fGENERAL-PROCEDURESg),
content GENERAL-PROCEDURE.&Message (fGENERAL-PROCEDURESgf@msgIdg),
g

In the type StartMessage the constraint following the content field tells that in a value of type
StartMessage the value in the content field must come from the same object that is choosen by the
msgId field.

So, the value #’StartMessage’fmsgId="home",content="Any Printable String"g is legal to encode
as a StartMessage value, while the value #’StartMessage’fmsgId="remote", content="Some
String"g is illegal since the constraint in StartMessage tells that when you have choosen a value from a
specific object in the object set GENERAL-PROCEDURES in the msgId field you have to choose a
value from that same object in the content field too. In this second case it should have been any
INTEGER value.

StartMessage can in the content field be encoded with a value of any type that an object in the
GENERAL-PROCEDURES object set has in its NEW MESSAGE field. This field refers to a type field &Message
in the class. The msgId field is always encoded as a PrintableString, since the field refers to a fixed type
in the class.

1.1.8 Parameterization (X.683)

Parameterization, which is defined in the standard [ITU-T X.683 [4]], can be used when defining types,
values, value sets, information object classes, information objects or information object sets. A part of a
definition can be supplied as a parameter. For instance, if a Type is used in a definition with certain
purpose, one want the typename to express the intention. This can be done with parameterization.

When many types (or an other ASN.1 entity) only differs in some minor cases, but the structure of the
types are similar, only one general type can be defined and the differences may be supplied through
parameters.

One example of use of parameterization is:

GeneralfTypeg ::= SEQUENCE
f

number INTEGER,
string Type

g

T1 ::= GeneralfPrintableStringg

T2 ::= GeneralfBIT STRINGg

21ASN.1 Application

Chapter 1: Asn1 User’s Guide

An example of a value that can be encoded as type T1 is f12,“hello”g.

Observe that the compiler not generates encode/decode functions for parameterized types, only for the
instances of the parameterized types. So, if a file contains the types Generalfg, T1 and T2 above,
encode/decode functions will only be generated for T1 and T2.

1.1.9 Tags

Every built-in ASN.1 type, except CHOICE and ANY have a universal tag. This is a unique number
that clearly identifies the type.
It is essential for all users of ASN.1 to understand all the details about tags.

Tags are implicitly encoded in the BER encoding as shown below, but are hardly not accounted for in
the PER encoding. In PER tags are used for instance to sort the components of a SET.

There are four different types of tags.

universal For types whose meaning is the same in all applications. Such as integers, sequences and so
on; that is, all the built in types.

application For application specific types for example, the types in X.400 Message handling service
have this sort of tag.

private For your own private types.

context This is used to distinguish otherwise indistinguishable types in a specific context. For example,
if we have two components of a CHOICE type that are both INTEGER values, there is no way for
the decoder to decipher which component was actually chosen, since both components will be
tagged as INTEGER. When this or similar situations occur, one or both of the components should
be given a context specific to resolve the ambiguity.

The tag in the case of the ’Apdu’ type [PRIVATE 1] is encoded to a sequence of bytes making it
possible for a decoder to look at the (initial) bytes that arrive and determine whether the rest of the
bytes must be of the type associated with that particular sequence of bytes. This means that each tag
must be uniquely associated with only one ASN.1 type.

Immediately following the tag is a sequence of bytes informing the decoder of the length of the
instance. This is sometimes referred to as TLV (Tag length value) encoding. Hence, the structure of a
BER encoded series of bytes is as shown in the table below.

Tag Len Value

Table 1.2: Structure of a BER encoded series of bytes

1.1.10 Encoding Rules

When the first recommendation on ASN.1 was released 1988 it was accompanied with the Basic
Encoding Rules, BER, as the only alternative for encoding. BER is a somewhat verbose protocol. It
adopts a so-called TLV (type, length, value) approach to encoding in which every element of the
encoding carries some type information, some length information and then the value of that element.
Where the element is itself structured, then the Value part of the element is itself a series of embedded
TLV components, to whatever depth is necessary. In summary, BER is not a compact encoding but is
relatively fast and easy to produce.

22 ASN.1 Application

1.1: Asn1

The DER (Distinguished Encoding Rule) encoding format was included in the standard in 1994. It is a
specialized form of BER, which gives the encoder the option to encode some entities differently. For
istance, is the value for TRUE any octet with any bit set to one. But, DER does not leave any such
choices. The value for TRUE in the DER case is encoded as the octet 11111111. So, the same value
encoded by two different DER encoders must result in the same bit stream.

A more compact encoding is achieved with the Packed Encoding Rules PER which was introduced
together with the revised recommendation in 1994. PER takes a rather different approach from that
taken by BER. The first difference is that the tag part in the TLV is omitted from the encodings, and any
tags in the notation are completely ignored. The potential ambiguities are resolved as follows:

� A CHOICE is encoded by first encoding a choice index which identifies the chosen alternative by
its position in the notation.

� The SET and SEQUENCE is treated in an identical manner as the elements transmitted in order.
When a SET or SEQUENCE has OPTIONAL or DEFAULT elements, the encoding of each of
the elements is preceded by a bit map to identify which OPTIONAL or DEFAULT elements are
present.

A second difference is that PER takes full account of the sub-typing information in that the encoded
bytes are affected by the constraints. The BER encoded bytes are unaffected by the constraints. PER
uses the sub-typing information to for example omit length fields whenever possible.

The run-time functions, sometimes take the constraints into account both for BER and PER. For
instance are SIZE constrained strings checked.

There are two variants of PER, aligned and unaligned. In summary, PER results in compact encodings
which require much more computation to produce than BER.

23ASN.1 Application

Chapter 1: Asn1 User’s Guide

24 ASN.1 Application

Asn1 Reference Manual

Short Summaries

� Erlang Module asn1ct [page 27] – ASN.1 compiler and compile-time support
functions

� Erlang Module asn1rt [page 31] – ASN.1 runtime support functions

asn1ct

The following functions are exported:

� compile(Asn1module) -> ok | ferror,Reasong
[page 27] Compile an ASN.1 module and generate encode/decode functions
according to the encoding rules BER or PER.

� compile(Asn1module , Options) -> ok | ferror,Reasong
[page 27] Compile an ASN.1 module and generate encode/decode functions
according to the encoding rules BER or PER.

� encode(Module,Type,Value)-> fok,Bytesg | ferror,Reasong
[page 29] Encode an ASN.1 value.

� decode(Module,Type,Bytes) -> fok,Valueg|ferror,Reasong
[page 29] Decode from Bytes into an ASN.1 value.

� validate(Module,Type,Value) -> ok | ferror,Reasong
[page 29] Validate an ASN.1 value.

� value(Module ,Type) -> fok,Valueg | ferror,Reasong
[page 29] Create an ASN.1 value for test purposes.

� test(Module) -> ok | ferror,Reasong
[page 30] Perform a test of encode and decode for types in an ASN.1 module.

� test(Module,Type) -> ok | ferror,Reasong
[page 30] Perform a test of encode and decode for types in an ASN.1 module.

� test(Module,Type,Value) -> ok | ferror,Reasong
[page 30] Perform a test of encode and decode for types in an ASN.1 module.

25ASN.1 Application

Asn1 Reference Manual

asn1rt

The following functions are exported:

� encode(Module,Type,Value)-> fok,BinOrListg | ferror,Reasong
[page 31] Encode an ASN.1 value.

� decode(Module,Type,Bytes) -> fok,Valueg|ferror,Reasong
[page 31] Decode from bytes into an ASN.1 value.

� validate(Module,Type,Value) -> ok | ferror,Reasong
[page 31] Validate an ASN.1 value.

� load driver() -> ok | ferror,Reasong
[page 31] Loads the linked-in driver.

� unload driver() -> ok | ferror,Reasong
[page 32] Unloads the linked-in driver.

� info(Module) -> fok,Infog | ferror,Reasong
[page 32] Returns compiler information about the Module.

26 ASN.1 Application

Asn1 Reference Manual asn1ct

asn1ct
Erlang Module

The ASN.1 compiler takes an ASN.1 module as input and genarates a corresponding
Erlang module which can encode and decode the datatypes specified. Alternatively the
compiler takes a specification module (se below) specifying all input modules and
generates one module with encode/decode functions. There are also some generic
functions which can be used in during development of applications which handles
ASN.1 data (encoded as BER or PER).

Exports

compile(Asn1module) -> ok | ferror,Reasong

compile(Asn1module , Options) -> ok | ferror,Reasong

Types:

� Asn1module = atom() | string()
� Options = [Option]
� Option = ber|per|ber bin|per bin|der|compact bit string|noobj|
foutdir,Dirg|fi,IncludeDirg|optimize

� Reason = term()

Compiles the ASN.1 module Asn1module and generates an Erlang module
Asn1module.erl with encode and decode functions for the types defined in
Asn1module. For each ASN.1 value defined in the module an Erlang function which
returns the value in Erlang representation is generated.

If Asn1module is a filename without extension first ".asn1" is assumed, then ".asn"
and finally ".py" (to be compatible with the old ASN.1 compiler). Of course
Asn1module can be a full pathname (relative or absolute) including filename with (or
without) extension.

If one wishes to compile a set of Asn1 modules into one Erlang file with encode/decode
functions one has to list all involved files in a configuration file. This configuration file
must have a double extension “.set.asn”, (“.asn” can alternatively be “.asn1” or “.py”).
The input files’ names must be listed, within qoutation marks (“”), one at each row in
the file. If the input files are File1.asn, File2.asn and File3.asn the configuration
file shall look like:

"File1.asn"
"File2.asn"
"File3.asn"

27ASN.1 Application

asn1ct Asn1 Reference Manual

The output files will in this case get their names from the configuration file. If the
configuration file has the name SetOfFiles.set.asn the name of the output files will
be SetOfFiles.hrl, SetOfFiles.hrl and SetOfFiles.asn1db.

Sometimes in a system of ASN.1 modules there are different default tag modes, e.g.
AUTOMATIC, IMPLICIT or EXPLICIT. The multi file compilation resolves the default
tagging as if the modules were compiled separetely.

Another unwanted effect that may occure in multi file compilation is name collisions.
The compiler solves this problem in two ways: If the definitions are identical then the
output module keeps only one definition with the original name. But if definitions only
have same name and differs in the definition, then they will be renamed. The new
names will be the definition name and the original module name concatenated.

If any name collision have occured the compiler reports a “NOTICE: ...” message that
tells if a definition was renamed, and the new name that must be used to
encode/decode data.

Options is a list with options specific for the asn1 compiler and options that are applied
to the Erlang compiler. The latter are those that not is recognized as asn1 specific.
Available options are:

ber | ber bin | per | per bin The encoding rule to be used. EncodingRule is ber
or per. If this option is omitted ber is the default. The per option means the
aligned variant, the unaligned variant of PER is not supported in this version of the
compiler. The generated Erlang module always gets the same name as the ASN.1
module and as a consequence of this only one encoding rule per ASN.1 module
can be used at runtime.
The ber bin and per bin options are equivalent with the ber and per options
with the difference that the generated encoding/decoding functions take advantage
of the bit syntax, which in most cases increases the performance considerably. The
result from encoding is a list (mayby nested) with Erlang terms, including binaries.
Note that the erlang virtual machine that will execute the generated code must be
of version R7 or higher.

der By this option the Distinguished Encoding Rule (DER) is chosed. DER is regarded
as a specialized variant of the BER encoding rule, therefore the der option only
makes sense when the ber or ber bin option is used. This option sometimes adds
sorting and value checks when encoding, which implies a slower encoding. The
decoding rutines are the same as for ber.

compact bit string Makes it possible to use a compact notation for values of the BIT
STRING type in Erlang. The notation:

BitString = fUnused,Binaryg,
Unused = integer(),
Binary = binary()

Unused must be a number in the range 0 to 7. It tells how many bits in the least
significant byte in Binary that is unused. For details see BIT STRING type section
in users guide [page 9].

fi,IncludeDirg Adds IncludeDir to the search-path for .asn1db files. The compiler
tries to open a .asn1db file when a module imports definitions from another
ASN.1 module. Several fi,IncludeDirg can be given.

noobj Do not compile (i.e do not produce object code) the generated .erl file. If this
option is omitted the generated Erlang module will be compiled.

28 ASN.1 Application

Asn1 Reference Manual asn1ct

fout dir,Dirg Specifies the directory Dir where all generated files shall be placed. If
omitted the files are placed in the current directory.

optimize This option is only valid together with one of the per bin or ber bin option.
It gives time optimized code generated and it uses another runtime module and in
the per bin case a linked-in driver. The result in the per bin case from an encode
when compiled with this option will be a binary.

"Erlang Option" The additional options that are applied will be passed to the final
step when the Erlang compiler is invoked.

The compiler generates the following files:

� Asn1module.hrl (if any SET or SEQUENCE is defined)

� Asn1module.erl the Erlang module with encode, decode and value functions.

� Asn1module.asn1db intermediate format used by the compiler when modules
IMPORTS definitions from each other.

encode(Module,Type,Value)-> fok,Bytesg | ferror,Reasong

Types:

� Module = Type = atom()
� Value = term()
� Bytes = [Int] when integer(Int), Int >= 0, Int =< 255
� Reason = term()

Encodes Value of Type defined in the ASN.1 module Module. Returns a list of bytes if
successful. To get as fast execution as possible the encode function only performs
rudimentary tests that the input Value is a correct instance of Type. The length of
strings is for example not always checked. Returns fok,Bytesg if successful or
ferror,Reasong if an error occured.

decode(Module,Type,Bytes) -> fok,Valueg|ferror,Reasong

Types:

� Module = Type = atom()
� Value = Reason = term()
� Bytes = [Int] when integer(Int), Int >= 0, Int =< 255

Decodes Type from Module from the list of bytes Bytes. Returns fok,Valueg if
successful.

validate(Module,Type,Value) -> ok | ferror,Reasong

Types:

� Module = Type = atom()
� Value = term()

Validates that Value conforms to Type from Module. Not implemented in this version of
the ASN.1 application.

value(Module ,Type) -> fok,Valueg | ferror,Reasong

Types:

29ASN.1 Application

asn1ct Asn1 Reference Manual

� Module = Type = atom()
� Value = term()
� Reason = term()

Returns an Erlang term which is an example of a valid Erlang representation of a value
of the ASN.1 type Type. The value is a random value and subsequent calls to this
function will for most types return different values.

test(Module) -> ok | ferror,Reasong

test(Module,Type) -> ok | ferror,Reasong

test(Module,Type,Value) -> ok | ferror,Reasong

Performs a test of encode and decode of all types in Module. The generated functions are
called by this function. This function is useful during test to secure that the generated
encode and decode functions and the general runtime support work as expected.
test/1 iterates over all types in Module.
test/2 tests type Type with a random value.
test/3 tests type <c>Type with Value.
Schematically the following happens for each type in the module.

{ok,Value} = asn1ct:value(Module,Type),
{ok,Bytes} = asn1ct:encode(Module,Type,Value),
{ok,Value} = asn1:decode(Module,Type,Bytes).

30 ASN.1 Application

Asn1 Reference Manual asn1rt

asn1rt
Erlang Module

This module is the interface module for the ASN.1 runtime support functions. To
encode and decode ASN.1 types in runtime the functions in this module should be used.

Exports

encode(Module,Type,Value)-> fok,BinOrListg | ferror,Reasong

Types:

� Module = Type = atom()
� Value = term()
� BinOrList = Bytes | binary()
� Bytes = [Int|binary|Bytes] when integer(Int), Int >= 0, Int =< 255
� Reason = term()

Encodes Value of Type defined in the ASN.1 module Module. Returns a possibly nested
list of bytes and or binaries if successful. If Module was compiled with the options
per bin and optimize the result is a binary. To get as fast execution as possible the
encode function only performs rudimentary tests that the input Value is a correct
instance of Type. The length of strings is for example not always checked.

decode(Module,Type,Bytes) -> fok,Valueg|ferror,Reasong

Types:

� Module = Type = atom()
� Value = Reason = term()
� Bytes = binary | [Int] when integer(Int), Int >= 0, Int =< 255 | binary

Decodes Type from Module from the list of bytes or binary Bytes. If the module is
compiled with ber bin or per bin option Bytes must be a binary. Returns fok,Valueg
if successful.

validate(Module,Type,Value) -> ok | ferror,Reasong

Types:

� Module = Type = atom()
� Value = term()

Validates that Value conforms to Type from Module. Not implemented in this version of
the ASN.1 application.

load driver() -> ok | ferror,Reasong

31ASN.1 Application

asn1rt Asn1 Reference Manual

Types:

� Reason = term()

This function loads the linked-in driver before the first call to encode. If this function is
not called the driver will be loaded automatically at the first call to encode. If one
doesn’t want the performance cost of a driver load when the application is running, this
function makes it possible to load the driver in an initialization.

The driver is only used when encoding/decoding ASN.1 files that were compiled with
the options per bin and optimize.

unload driver() -> ok | ferror,Reasong

Types:

� Reason = term()

This function unloads the linked-in driver. When the driver has been loaded it remains
in the environment until it is unloaded. Normally the driver should remain loaded, it is
crucial for the performance of ASN.1 encoding.

The driver is only used when ASN.1 modules have been compiled with the flags
per bin and optimize.

info(Module) -> fok,Infog | ferror,Reasong

Types:

� Module = atom()
� Info = list()
� Reason = term()

info/1 returns the version of the asn1 compiler that was used to comile the module. It
also returns the compiler options that was used.

32 ASN.1 Application

List of Tables

1.1 The supported ASN.1 types . 6

1.2 Structure of a BER encoded series of bytes . 22

33ASN.1 Application

List of Tables

34 ASN.1 Application

Bibliography

[1] ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1: 1995, Abstract Syntax Notation One
(ASN.1): Specification of Basic Notation.

[2] ITU-T Recommendation X.681 (1994) | ISO/IEC 8824-2: 1995, Abstract Syntax Notation One
(ASN.1): Information Object Specification.

[3] ITU-T Recommendation X.682 (1994) | ISO/IEC 8824-3: 1995, Abstract Syntax Notation One
(ASN.1): Constraint Specification.

[4] ITU-T Recommendation X.683 (1994) | ISO/IEC 8824-4: 1995, Abstract Syntax Notation One
(ASN.1): Parameterization of ASN.1 Specifications.

[5] ITU-T Recommendation X.690 (1994) | ISO/IEC 8825-1: 1995, ASN.1 Encoding Rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER).

[6] ITU-T Recommendation X.691 (04/95) | ISO/IEC 8825-2: 1995, ASN.1 Encoding Rules:
Specification of Packed Encoding Rules (PER).

[7] Oliver Dubuisson, ASN.1 Communication between Heterogeneous Systems, June 2000 ISBN
0-126333361-0.

[8] J. Armstrong, R. Virding, C. Wikstrom, M. Williams, Concurrent Programming in ERLANG,
Prentice Hall, 1996, ISBN 0-13-508301-X.

35ASN.1 Application

Bibliography

36 ASN.1 Application

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

asn1ct
compile/1, 27
compile/2, 27
decode/3, 29
encode/3, 29
test/1, 30
test/2, 30
test/3, 30
validate/3, 29
value/2, 29

asn1rt
decode/3, 31
encode/3, 31
info/1, 32
load_driver/0, 31
unload_driver/0, 32
validate/3, 31

compile/1
asn1ct , 27

compile/2
asn1ct , 27

decode/3
asn1ct , 29
asn1rt , 31

encode/3
asn1ct , 29
asn1rt , 31

info/1
asn1rt , 32

load_driver/0
asn1rt , 31

test/1

asn1ct , 30

test/2
asn1ct , 30

test/3
asn1ct , 30

unload_driver/0
asn1rt , 32

validate/3
asn1ct , 29
asn1rt , 31

value/2
asn1ct , 29

37ASN.1 Application

Index of Modules and Functions

38 ASN.1 Application

